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I.Lomov, M.B.Rubin 

Abstract. A new continuum model for directional tensile failure has been developed that can simulate 
weakening and void formation due to directional tensile failure. The model is developed within the context of a 
properly invariant nonlinear thermomechanical theory. A second order damage tensor is introduced which allows 
simulation of weakening to tension applied in one direction, without weakening to subsequent tension applied in 
perpendicular directions. This damage tensor can be advected using standard methods in computer codes. Porosity 
is used as an isotropic measure of volumetric void strain and its evolution is influenced by tensile failure. The rate of 
dissipation due to directional tensile failure takes a particularly simple form, which can be analyzed easily. 
Specifically, the model can be combined with general constitutive equations for porous compaction and dilation, as 
well as viscoplasticity. A robust non-iterative numerical scheme for integrating these evolution equations is 
proposed. This constitutive model has been implemented into an Eulerian shock wave code with adaptive mesh 
refinement. A number of simulations of complicated shock loading of different materials have been performed 
including problems of fracture of rock. These simulations show that directionality of damage can play a significant 
role in material failure. 

1. INTRODUCTION 

We present a continuum model and numerical method for modeling large-deformation flows with 
directional tensile failure. A number of continuum damage models was developed for Lagrangian codes, 
but problems frequently involve deformations too severe to be handled by the same Lagrangian mesh 
during entire calculation. Several Eulerian approaches on staggered grid were developed [ 11 which are 
capable to survive severe material distortion. We are using high-order Godunov scheme since it is easy to 
couple it with adaptive mesh refinement algorithms. On the other hand it is often difficult or impossible to 
implement complex constitutive models in Eulerian codes. The constitutive model described here 
combines a straightforward implementation and possibility of the thermodynamic analysis [2]. 
Constitutive models for tensile failure and damage typically include a reduced yield strength, a reduced 
elastic modulus an evolving void strain. The model presented in this paper focuses mainly on the latter. A 
comprehensive model for porous elastic-viscoplastic material with tensile failure that is applicable to 
shock problems is recorded in [3] and addresses other phenomena. Porosity is used as an isotropic 
measure of volumetric void strain and its evolution is influenced by tensile failure. Furthermore, instead 
of introducing a void strain tensor, the inelastic effects of directional void opening and closing are 
modeled by introducing their effects on the rate of evolution of elastic deformation. 

The main objective of a constitutive model for directional tensile failure, like the one developed in this 
paper, is to model the fact that although a brittle material (like rock) can fail in one direction it may retain 
virgin strength to tensile failure in a perpendicular direction. From the mathematical point of view it is 
always possible to propose evolution equations for the internal state variables that ensure maximum 
dissipation. However, such constitutive assumption may be difficult to interpret physically. Therefore, a 



major challenge in the development of a theory of directional tensile failure is to develop a theoretical 
structure that is amenable to the analysis of physically based constitutive assumptions, to the development 
of a robust integration scheme and implementation to a general computer code. 

2. CONSTITUTIVE MODEL 

In contrast with standard approaches to plasticity which introduce measures of inelastic deformation 
through evolution equations, the approach taken here is to propose evolution equations directly for elastic 
deformation measures [3]. Specifically, within the context of the proposed model it is convenient to 
introduce a measure of elastic deformation as a symmetric, invertible, positive definite tensor Be which is 
determined by integrating the evolution equation 

i, = LB, + BeLT - J;I3A , (1) 
where J, is a pure measure of elastic dilatation J: = det(B,) and L denotes the velocity gradient. The 
tensor A includes the inelastic effects of the rate of plastic deformation as well as that due to directional 
tensile failure. Moreover it is possible to define Bk as a unimodular tensor which is a pure measure of 
elastic distortional deformation 

B' e = J-213 e B e '  det(Bd) = 1 . (2) 
It can be shown that J, and Bd are determined by the evolution equations 

ie/ J, = D I -  1/2 A B1,-l, 
2 1 

= LBd + B k L T - ~  (D I) B1, - [A -3 (A BL-l) B1, 1, 
where D is the symmetric part of the velocity gradient. For porous materials it is common to introduce the 
current value , and the reference density so of the solid matrix, such 
that 

(3a,b) 

of porosity, its reference value 

1- 
(4) J, = [c] J , 0 = (1- so , = (1- )Jil so , 

The Helmholtz free energy is assumed to be a function of the variables J,, Bk, and temperature . 
must remain unaltered under superposed rigid body motions it follows that it can be a 

is 
However, since 
function of B1, only through its two independent invariants 
taken to be independent of so that it takes the form = (J,, 1, ). 

Constitutive equations are required to satisfy statements of the second law of thermodynamics with 
include the condition that heat flows from hot to cold, and the condition that the material dissipation is 
nonnegative [4]: 

= Bd I , = Bk B1,. For simplicity, 

W 

' = T * D -  ( + )LO. (5) 
It can be shown [3] that in order to satisfy the condition ( 5 )  the stress T and the entropy 
given in the hyperelastic forms: 

have to be 

a d p =-  , T ; = 2 J , '  -BL, d 
s SOdJ, s o a  

T = - p I + T ' ,  - - - - a , p = (1- ) ps, T = (1- )Ti, 

where p is the pressure, T is the deviatoric part of the stress, Bd' is the deviatoric part of Bd, ps and Tl are 
the pressure and deviatoric stress of the solid matrix, respectively. 

Next, the inelastic deformation tensor A is separated into a part A, associated with viscoplasticity and 
a part A, associated with void formation due to tensile failure 



where the scalar 
convenient to define pi as the orthonormal right-handed set of eigenvectors of B;, so that 

Thus, in view of the constitutive equations (21), the stress T can be written in its spectral form 

where 
these principal stresses so that A, is specified in the form 

requires a constitutive equation. In order to propose a constitutive equation for A, it is 

B'  e = 1 (PI P I ) +  2 ( ~ 2  ~ 2 ) +  3 ( ~ 3  ~ 3 ) .  

T =  1 (PI PI) + 2 (P2 P2) + 3 (P3 P3) 3 

are the principal stresses. Next, it is assumed that the rate of void formation tends to reduce 

A v = 2  v l  
where the scalar functions vi require constitutive equations. The rate of dissipation reduces to [2] 

1 (PI PI)+ v2 2(P2 P2)+ v3 3 (P3 P3)L 

1 -  1 1 1 -  

v + d, v -  1 V I +  2 v 2 +  3 v3 - 

where 
deformation which is nonnegative if a a and are each non-negative [3]. 

the forms 

; is the dissipation of void formation and ;I is the dissipation of plastic distortional 

The rate of change of porosity and the rate of elastic distortional deformation (3) can be rewritten in 

41- = V I +  v 2 +  v33 
0 2 

Next, it is convenient to introduce a symmetric tensor L, which is interpreted as the distribution of 
in a general direction n (n n =1) 

B;=LB; + B ; L T - p  I)B;-Ap-2 1 ;](PI P1)-2 2 ;2(P2 P2)-2 3 ;3 (P3 P3). (7) 

damage due to directional tensile failure. In particular, the damage 
and the damage in the principal directions of stress pi are defined by 

= L * ( n  n) , ,= S * ( p ,  p,) (nosumoni) , 

where x represent the Macauley brackets x = 1/2[x + lxl]. Thus, the principal directions of A represent 
normals to potential weak planes, with the weakest plane being normal to the principal direction 
associated with the largest principal value of h. In this sense, A acts like a structural tensor to specify the 
directionality of tensile failure. Moreover, d is determined by the evolution equation 

& = W A + L . W T + m  A ,  

where m and n are material constants, W is the skew-symmetric part of the velocity gradient, and A 
determines the direction of increase in damage. 
directional dependence of damage and remain properly invariant under superposed rigid body motions. 

This is one of simplest equations that allows for 

A specific constitutive equation for directional tensile failure is proposed in the form: 

where vo, Tf , af and nf are non-negative material constants. It then follows that (9) predicts dilation for 
less than the greater than the tensile failure value 1 - Tf and it predicts compaction for 



compressive failure. Since 1 - Tf is non-negative, these functions automatically satisfy the restriction 
v -  ' >O. The term {(aft f) eliminates further compaction when the failure porosity vanishes and the 

term ( i)nf reduces compaction due to tensile failure in directions that have not been sufficiently 
damaged. 

3. NUMERICAL SCHEME 

Eulerian framework adaptive mesh refinement (AMR) [5] is a relatively mature technique for 
dynamically applying high numerical resolution to those parts of a problem domain that require it, while 
solving less sensitive regions on less expensive, coarser computational grids. In combination, Eulerian 
Godunov methods with AMR have been proven to obtain highly accurate and efficient solutions to shock 
capturing problems. Our method is based on some modifications of the single-phase high-order Godunov 
method. We present a brief summary of it. For solid mechanics, the governing equations consist of the 
laws of conservation of mass, momentum and energy, the equation (3b), and a number of equations in a 
form of 

which represents a specific rheological equation for history dependent parameters , (like 
porosity, plastic strain, etc.) The equations for viscoplasticity can be written in conservative form, 
required for finite-volume methods, only at additional cost (for example, consideration of the full 
nonsymmetric deformation tensor and complementary plastic deformation tensor) [6]. However, highly 
nonlinear behavior of shear stresses (like shear shock waves and rarefaction fans) is very rare and a 
divergent formulation does not have simple and clear physical meaning. While equations (7,8) are not 
written in conservative form (lo), we update BL and d i n  the same way as other history dependent 
variables. The estimate for velocity gradient L is calculated by Riemann solver described below. So for 
each material we have a system of conservation laws 

(11) 
U 

t 
f(u) CD u - 

Our numerical scheme for single fluid cell is based on approach of Miller and Puckett [7] and Colella, 
etc. [8] with some modifications to take into account full stress tensor. We solve multidimensional 
equations by using operator splitting technique, in which we solve the one-dimensional equations for each 
direction: 

where L is full update operator, L, is update of in p direction without using the right part of equation (1 1) 
and S is update with the right part of equation (1 1). 

egdes (i 1/2,i 1/2) in p direction, 

2L 4L2L3SL344S9 

Each operator L, is update of cell i from time step n to time step n+l with fluxes computed at the cell 

u; ' U; 
t 
X 
- f u: "2 

I 112 f u; ;;; 
In order to construct time- and edge-centered states u; ;,!; we are using an upwind characteristic 

tracing method based on the quasilinear form of (1 l), 



W W T 

t X 
C- W ,  w , ,v,T, , - 

The eigenvalue decomposition of the matrix C provides all necessary information to do upwind 
characteristic tracing following [7] and to solve the Riemann problem in an acoustic approximation. 
While the latter is an appropriate approximation for shear waves, we calculate longitudinal waves in a 
manner similar to [SI without compromising the quality of solution for strong shock waves and 
rarefaction fans. 

We are concerned with computing large-deformation flows in problems consisting of multiple 
resolved phases. The algorithm described here treats the propagation of surfaces in space in terms of an 
equivalent evolution of volume fractions. Our approach to modeling multimaterial cells is similar to [7]. 
Material properties are multiply valued in a cell, but the velocity and stress are single valued. In order to 
use the single-fluid solver we need to define effective single phase for the mixed cells and update material 
volume fractions based on self-consistent cell thermodynamics [7 ] :  

where f , p , K are the volume fraction, pressure and the bulk modulus of material . The averaging of 
the shear modulus G , the stress deviator T , and calculation of velocity gradient L for specific 
material is done in a similar way, 

1/G f / G ,  T G f T / G ,  L LGIG 
Many source terms in (IO) for viscoplastic materials with damage are very non-linear which leads to 

necessity to deal with numerical solutions of the stiff equations. When the constitutive model allow such a 
representation, it is possible to simplify the process by defining the “target” value for parameters and then 
solve a relaxation equation implicitly based on the “trial” value and the target value of parameters. We 
used this approach to find appropriate values for vj in (7) in acoustic approximation. In this case it is 
possible to form a system of linear equations, 

where Cij is a matrix dependent on elastic coefficients and is a “trial” stress. Cij depends on whether 
there is an active failure process in specific direction. So the solution is obtained by guessing a branch of 
the solution (based on the values of fi associated with estimates of the stresses i), then using the 

appropriate values of Cij solving (12) for the updated p’. The solution is considered to be correct if the 
updated values of fi correspond to the same branch that is being checked. 

n + l =  1 ;-c,  fi i,j=1,2,3 (12) 

4. SIMULATION EXAMPLE 

To test the present model and implementation of the numerical scheme simulations of explosion inside a 
marble cylinder were undertaken. We model marble as elastic-plastic material with constant shear 
modulus and pressure-dependent yield strength. We implemented a Mie-Griineisen equation of state to 
represent volumetric response. We use an Eulerian computational mesh with 400x400 cells. 

A damage map on the cross-section of the cylinder is shown in Figure 1. Time corresponds to 
approximately 2.5 R / c, (when the development of major damage features almost stopped), where R is the 
radius of the cylinder and c,is longitudinal sound speed in marble. Figures l a  and lb  represent 
component TT and field due to the 
outward movement close to the source and spa11 induced damage in the 

of the tensor field A .  We can see distinctive features in the 
TT field near the edges. 



Figure 1. Components of the damage tensor in the rock cylinder subjected to explosive loading 
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